Pursuit Reinforcement Competitive Learning: PRCL based Online Clustering with Learning Automata
نویسنده
چکیده
A new online clustering method based on not only reinforcement and competitive learning but also pursuit algorithm (Pursuit Reinforcement Competitive Learning: PRCL) as well as learning automata is proposed for reaching a relatively stable clustering solution in comparatively short time duration. UCI repository data which are widely used for evaluation of clustering performance in usual is used for a comparative study among the existing conventional online clustering methods of Reinforcement Guided Competitive Learning: RGCL, Sustained RGCL: SRGCL, Vector Quantization, and the proposed PRCL. The results show that the clustering accuracy of the proposed method is superior to the conventional methods. More importantly, it is found that the proposed PRCL is much faster than the conventional methods. The proposed method is then applied to the evacuation simulation study. It is found that the proposed method is much faster than the conventional method of vector quatization to find the most appropriate evacuation route. Due to the fact that the proposed PRCL method allows finding the most appropriate evacuation route, collisions among peoples who have to evacuate for the proposed method is much less than that of vector quatization. Keywords—Pursuit Reinforcement Guided Competitive Learning; Reinforcement Guided Competitive Learning; Sustained Reinforcement Guided Competitive Learning Vector Quantization; Learning Automata
منابع مشابه
Pursuit Reinforcement Competitive Learning: PRCL based Online Clustering with Tracking Algorithm and its Application to Image Retrieval
Pursuit Reinforcement guided Competitive Learning: PRCL based on relatively fast online clustering that allows grouping the data in concern into several clusters when the number of data and distribution of data are varied of reinforcement guided competitive learning is proposed. One of applications of the proposed method is image portion retrievals from the relatively large scale of the images ...
متن کاملA Reinforcement Learning Approach to Online Clustering
A general technique is proposed for embedding online clustering algorithms based on competitive learning in a reinforcement learning framework. The basic idea is that the clustering system can be viewed as a reinforcement learning system that learns through reinforcements to follow the clustering strategy we wish to implement. In this sense, the reinforcement guided competitive learning (RGCL) ...
متن کاملUtilizing Generalized Learning Automata for Finding Optimal Policies in MMDPs
Multi agent Markov decision processes (MMDPs), as the generalization of Markov decision processes to the multi agent case, have long been used for modeling multi agent system and are used as a suitable framework for Multi agent Reinforcement Learning. In this paper, a generalized learning automata based algorithm for finding optimal policies in MMDP is proposed. In the proposed algorithm, MMDP ...
متن کاملLow-Area/Low-Power CMOS Op-Amps Design Based on Total Optimality Index Using Reinforcement Learning Approach
This paper presents the application of reinforcement learning in automatic analog IC design. In this work, the Multi-Objective approach by Learning Automata is evaluated for accommodating required functionalities and performance specifications considering optimal minimizing of MOSFETs area and power consumption for two famous CMOS op-amps. The results show the ability of the proposed method to ...
متن کاملA Link Prediction Method Based on Learning Automata in Social Networks
Nowadays, online social networks are considered as one of the most important emerging phenomena of human societies. In these networks, prediction of link by relying on the knowledge existing of the interaction between network actors provides an estimation of the probability of creation of a new relationship in future. A wide range of applications can be found for link prediction such as electro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016